Molecular Insight into the Adsorption and Diffusion of Water in the Versatile Hydrophilic/Hydrophobic Flexible MIL-53(Cr) MOF

Fabrice Salles‡, Sandrine Bourrelly‡, Hervé Jobic§, Thomas Devic∥, Vincent Guillerm∥, Philip Llewellyn†, Christian Serre∥, Gérard Ferey∥, and Guillaume Maurin*†

‡Institut Charles Gerhardt Montpellier — UMR CNRS 5253, UM2, ENSCM-Université Montpellier 2, Place E. Bataillon, 34095 Montpellier Cedex 05, France
‡Laboratoire Chimie Provence, Universités d’Aix-Marseille I, II et III - CNRS, UMR 6264, Centre de Saint Jérôme, 13397 Marseille, France
§Institut de Recherches sur la Catalyse et l’Environnement de Lyon, CNRS- Université Lyon 1, UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
∥Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
†Institut de Recherches sur la Catalyse et l’Environnement de Lyon, CNRS- Université Lyon 1, UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France

ABSTRACT: Prior to envisage any implication of metal—organic framework (MOF) materials in industrial applications such as gas storage/separation, it is of primary importance to examine beyond their stability under humidity, the interactions between water and MOF surfaces. Regarding the MOF type MIL-53(Cr), the situation becomes more complex due to the breathing of its structure upon water adsorption that induces a structural transition between a narrow pore (NP) and a large pore (LP) forms. The resulting shrinkage/reopening of the framework leads to crucial modifications of the hydrophobicity/hydrophilicity character of the material. A combination of molecular simulations (Grand Canonical Monte Carlo and molecular dynamics) and experimental techniques (quasi-elastic neutron scattering and gravimetry/volumetry) allows a complete elucidation of the adsorption and diffusion mechanisms in play in this structure. It also provides a microscopic explanation of the hydrophilic and mildly hydrophobic behaviors of the NP and LP forms respectively. The arrangements of water within the two porosities are then discussed and compared to those usually observed for the liquid state. Furthermore, the self-diffusivity for water in these two structural forms significantly differs both in magnitude and mechanism with a normal and single file one-dimensional diffusion mechanisms in the LP and NP forms, respectively. Indeed, this anomalous behavior of the MIL-53(Cr) upon water adsorption implies a strong modification of its hydrophilic/hydrophobic character. This unusual behavior opens a promising direction to improve the selectivity of MOFs in industrial applications such as purification of alcohols without the need for functionalization procedures.

INTRODUCTION

Metal—organic frameworks (MOFs) or porous coordination polymers first appeared at the end of the 1990s.1,2 They are a class of hybrid organic—-inorganic materials, which are built up from inorganic subunits (transition metals, main group elements, lanthanides, and so forth) and organic moieties (polyphosphonates, polycarboxylates, imidazolates, and so forth). The emergence of novel MOF structures has been almost exponential since the first reporting of MOF-5 by Yaghi et al.1,3 Their direct4 and postsynthetic functionalizations5−9 have further allowed the preparation of a wide range of hybrid materials, offering a way to both modulate their interactions with different types of guest molecules10−15 and to enhance their thermal stability in air.16,17 Any signiﬁcant alteration of their porosity upon water adsorption18−21 or water.18 All these features make them very promising candidates in different areas including gas capture/separation, catalysis and drug encapsulation.2,10,11,13,17,20 However, prior to envisage any implication of these solids in industrial applications regarding gas adsorption/separation, it is of primary importance to both examine their stability under humidity and to understand the interactions between water and the MOF surface which are known to signiﬁcantly either alter or improve their adsorption/separation performances with respect to different gases.22−33 In that way, the stability of a wide range of MOFs under water atmosphere has already been evaluated.18,34 For instance, the Material of the Institut Lavoisier (MIL) series do not show any signiﬁcant alteration of their porosity upon water adsorption,32,33 and especially the ﬂexible MIL-53 solid, while some other MOFs including MOF-177, MOF-5, and HKUST-1 are

Received: March 7, 2011
Revised: April 19, 2011
Published: May 06, 2011
unstable. In contrast, only a few experimental adsorption isotherms are available in the literature for such materials, and the exploration of the interactions between polar molecules, that is, water and alcohols, and the MOF surfaces is scarcely investigated so far. It has been thus experimentally evidenced that, while most of the investigated MOFs are hydrophilic giving rise to interactions via hydrogen bonds between their pore walls and the polar molecules, some others show a V-type isotherm characteristic of the hydrophobic nature of their surfaces. From a modeling standpoint, most of the studies were concentrated on determining the location of the polar molecules within the porosity of some MOFs using either energy minimization techniques based on classical force fields or quantum calculations. Exploring the behavior of water confined in nanoporous materials is also of fundamental interest as attested by the large number of studies devoted to this topic since the past few years on different solids including zeolites, mesoporous silicas, activated carbons and more recently on MOFs. Canonical Monte Carlo simulations to characterize the hydrophobic behavior of the Al(OH)(1,4-naphthalenedicarboxylate) which is a one-dimensional (1D) MOF type material.

Here, one aims at providing molecular insight into the adsorption and diffusion processes of water occurring in the MIL-53(Cr) solid. Chromium terephthalate (L) formulated Cr(OH)(L) presents a 1D pore system associated with a high structural flexibility either with temperature or pressure or in presence of various guest molecules. This behavior was attributed to a reversible structural switching between a narrow (NP) and a large pore (LP) form, implying variations in cell volume up to 30% in presence of CO2. This investigation follows a recent study reported by some of us which revealed an anomalous water adsorption behavior of this solid at low pressure that was not fully explained at the microscopic scale. A preliminary step consisted of conducting molecular dynamics in the NVT ensemble to validate the force field selected for representing the MIL-53(Cr)/H2O interactions, by successfully capturing the two consecutive structural switching upon water adsorption from the LP to the NP forms followed by a reopening of the structure at higher pressure as shown by ex-situ X-ray diffraction (see Figure 1). Grand Canonical Monte Carlo simulations based on this force field were then employed to predict both the absolute adsorption isotherm and enthalpy, which are further compared to gravimetry/microcalorimetry data. The complex shape of the adsorption isotherm at low pressure is then interpreted in light of the structural transitions in play. The resulting modification of the water affinity of the MIL-53(Cr) when one switches from the LP to the NP forms is further discussed by a careful inspection of the microscopic adsorption mechanism for water in the two structures. As far as we know, it is the first time that the hydrophobic/hydrophilic character of a solid can be tuned by a structural transition that leads to the observation of a V-type shape isotherm at low pressure. The so-observed “hydrophobic” character of the LP form is further compared to the water adsorption behavior of its isostructural rigid V(O)(L) or MIL-47(V) counterpart. In this latter material, the substitution of the μ2-OH vertices by the μ2-O groups at the MOF surface is expected to enhance its hydrophobicity. At this point, one emphasizes how the adjustment of the partial charges carried out by the atoms of the hydrophobic MIL-47 framework is a critical step to get a better agreement between experimental and simulated adsorption isotherms. The confinement effect on the arrangement of the water molecules within the porosity of both MILs is then pointed out by a direct comparison with the microscopic behavior of the same molecule in the liquid state. Finally, molecular dynamics is coupled with quasi-elastic neutron scattering experiments in order to shed some light into the dynamics of water in these hybrid materials, which has not been addressed so far in any MOF type solids.

MATERIALS AND METHODS

Sample Preparation. MIL-53(Cr) and MIL-47(V) were synthesized and activated according to the published procedures. Hydrogenated samples were used for the isotherm measurements, whereas deuterated MIL-53(Cr) was selected for the neutrons scattering experiments. This latter was prepared from d4-terephthalic acid (Euristotop, France) and hydrogenated solvent as already reported. The adsorption isotherms were obtained by gravimetry measurements. The laboratory-made adsorption apparatus includes a symmetrical balance and allows a continuous introduction of vapor to the sample in a slow enough manner to ensure quasi-equilibrium between the vapor and the solid and a high-resolution isotherm plot. For each series of experiments, this quasi-equilibrium condition is verified by stopping the vapor introduction and ensuring that no change in pressure or mass is observed. A typical adsorption—desorption isotherm takes around 10 days. To carefully measure the desorption of the water vapor from the fully hydrated MIL-47(V), a new experimental procedure was used in which the porous solid is initially immersed in an excess of liquid and then slowly evacuated under controlled vacuum conditions, usually through a capillary toward vacuum.

Quasi- Elastic Neutron Scattering. The quasi-elastic neutron scattering (QENS) measurements were performed on the time-of-flight spectrometer IN6, at the Institut Laue-Langevin, in Grenoble, France. The incident neutron energy was taken as 3.12 meV, corresponding to a wavelength of 5.1 Å. Once scattered by the sample, the neutrons are analyzed as a function of flight time and angle. Groupings of spectra were made outside the Bragg peaks of MIL-53(Cr), the average wavevector transfer, Q, ranging from 0.27 to 1.6 Å⁻¹. The line shape of the elastic energy resolution could be fitted by a Gaussian function, whose half-width at half-maximum (HWHM) varied from 40 μeV at small Q to 50 μeV at large Q. After measuring the scattering of the empty MIL, different water concentrations were adsorbed in situ at 300 K, starting from the LP form. After the second loading, the transition to the NP form was observed. The water concentrations were determined from a comparison of the equilibrium pressures with an adsorption isotherm. The largest loading...
corresponded to 6 H$_2$O/uc (unit cell), so that the reopening of the structure was not observed.

COMPUTATIONAL METHODS

Microscopic Models and Force Fields. The periodic models of the MIL-47(V) and the large pore (LP) form of MIL-53(Cr) were built using the atomic coordinates available in the literature59,66 while the partial charges of both MILs were taken from our preliminary density functional theory (DFT) calculations.67 The 12-6 Lennard-Jones (IJ) intertatomic potential parameters and the intramolecular terms for describing the flexible MIL-53(Cr) come from our previous study which has successfully captured the breathing of this solid in presence of CO$_2$.65 The 12-6 LJ parameters for the MIL-47(V) were also taken from our recent investigation.67

The water molecule was treated by the TIP4P-2005 model developed by Abascal and Vega.68 Such a four-site model has been successfully used to reproduce the experimental vapor—liquid phase equilibrium data. The corresponding partial charges expressed in electron units are 0.5564, 0, and 1.1128 for the H, O, and M (placed on the bisector of the HOH angle at 0.1546 Å from the oxygen) sites, respectively. The LJ term is centered only on the oxygen nucleus.

The adsorbate/adsorbent LJ interatomic potential parameters were then calculated using Lorentz–Berthelot mixing rules.

Molecular Dynamics. Molecular dynamics (MD) simulations were performed using the DL_POLY_2.19 program69 in the NoT ensemble, which was able to simulate both the size and shape changes. The Berendsen and Nosé-Hoover thermostats and barostats were considered for the calculations with the same relaxation times as used in our previous simulations.65 MD simulations were first conducted at 300 K starting with the empty LP structure of the MIL-53(Cr) loaded by a number of water molecules ranging from 0.5 to 8 per unit cell, in order to follow the evolution of the structural features of this material as a function of the water content. Each MD was run for 2 ns with a time step of 1 fs, using 32 unit cells to get good statistics and the activation energies from the linear least-squares relations72 as reported in eq 1

$$D_S(c) = \lim_{t \to \infty} \frac{1}{N} \left\{ \frac{1}{N} \sum_{j=1}^{N} ||r_j(t) - r_j(0)||^2 \right\}$$

(1)

In this equation, $\langle \cdot \rangle$ denotes an ensemble average, $r(t)$ is the position of the tagged guest molecule while N corresponds to the number of H$_2$O molecules in the simulation volume. Further, in order to improve the statistics of the calculation, multiple time origins, as described elsewhere,72 were used while the D_S values were averaged over 5 independent trajectories. Complementary MD simulations were performed at different temperatures in the range [300–500 K] for a loading of 2 H$_2$O/uc in order to extract the activation energies from the linear least-squares fit to the Arrhenius plots of ln(D_S) vs $1/T$.

The rotational dynamics for water molecules in the MIL-53(Cr) was further determined from these MD runs by calculating the orientational autocorrelation function $A(t)$ defined by eq 2

$$\langle A(0)A(t) \rangle = \frac{5}{8} \langle (3 \cos^2 \theta(0) - 1)(3 \cos^2 \theta(t) - 1) \rangle$$

(2)

where θ is the angle between the molecular end-to-end vector and the MOF coordinate system. Instead of using a fit of the autocorrelation function with three exponential components as proposed by Saengsawang et al.,73 we considered here the time at which the autocorrelation function drops down to 1/e as the characteristic average time for the rotational reorientation of the molecule, following the same approach reported by Wehring et al.74

Grand Canonical Monte Carlo Simulations. Grand Canonical Monte Carlo (GCMC) simulations were performed by means of the Complex Adsorption and Diffusion Simulation Suite (CADSS) code35 with typically 2.0 x 107 Monte Carlo steps following 1.5 x 107 steps for equilibration. The Ewald summation was also used for calculating the electrostatic interactions while the short-range contributions were computed with a cutoff distance of 12 Å to be consistent with MD calculations. The simulations were conducted at 300 K using both the NP and LP structures as rigid, considering simulation boxes as 32 unit cells that allowed us to evaluate the
absolute adsorption isotherms and the adsorption enthalpies. A composite approach that we already successfully employed for other gases32,64,65 in this material, was further considered to describe a simulated adsorption isotherm in the whole range of pressure by considering the isotherms calculated in both rigid LP and NP forms and the fractions of the two forms present along the pressure range that were taken from previously reported infrared measurements.32,64,65

■ RESULTS AND DISCUSSION

The structural evolution of the MIL-53(Cr) solid (see Figure 1) upon water adsorption was first investigated using NoT MD simulations based on the force field described above. Figure 2 summarizes the simulated unit cell volumes for MIL-53(Cr) as a function of the water loading which varies from 0.5 to 8 H$_2$O molecules/uc in order to span the whole pressure range of the adsorption isotherm (Figure 3a). For 0.5 and 1 H$_2$O/uc, the structure remains in its initial LP form with a unit cell volume of 1510 Å3, very close to the one simulated in absence of water (1490 Å3) that further compares very well with the experimental one (1486 Å3). A drop in the unit cell volume occurs for 1.5 H$_2$O/uc attaining a value of 950 Å3, consistent with a NP form.59 For 5 H$_2$O/uc corresponding to the adsorbed amount on the first plateau of the experimental adsorption isotherm (Figure 3a), the structure is still in its NP version with a unit cell volume of 1012 Å3, which is in very good agreement with the one previously determined by ex-situ X-ray diffraction for similar loading (1020 Å3). Further, above 5 H$_2$O/uc, an expansion of the unit cell volume occurs, suggesting a progressive swelling of this form, as emphasized for other guest molecules.63,65 This is not experimentally confirmed in this case since the ex-situ X-ray diffraction measurements were not performed continuously in the whole range of pressures investigated by the simulations. The structure then returns to the LP form for 8 H$_2$O/uc with a simulated volume of 1475 Å3 very close to the initial empty form. Indeed, our simulations predict the predominance of the LP form at very low loading and above 5 H$_2$O/uc, while the NP version is present in the intermediate range of loading. In addition to the agreement between the simulated unit cell volume and the experimental one available for two loadings, these conclusions are also consistent with the presence of substeps in the isotherms around 1 and 6 H$_2$O/uc assigned to the two consecutive structural switchings from LP to NP and from NP to LP (see Figure 3a). At higher loadings, the unit cell volumes slightly increase. This result is also consistent with the recent findings reported by Guillou et al.76 that determined a unit cell volume of 1550 Å3 for the superhydrated LP structure. This whole set of data allowed us to validate the force field used here to describe the intermolecular water/water and water/MIL framework interactions in complement to the intramolecular interactions within the MIL-53(Cr) framework.

A further step consisted of simulating the adsorption isotherms and enthalpies for the rigid NP and LP forms at 300 K (see Figures 3) using the so-validated force field. Figure 3a reports the two simulated isotherms for pressures varying from 0 to 50 mbar, close to the saturation pressure at 300 K (∼37 mbar). One can observe the following two distinct behaviors: while the adsorption isotherm calculated for the LP form presents a rapid increase of the adsorbed amount up to a saturation of 5 H$_2$O/uc, the adsorption in the LP form starts with a very small uptake at low pressure (5 mbar) leading to the presence of a plateau, followed by a sudden increase up to reach 21 H$_2$O/uc at 40 mbar. In this latter case, one obtains a type-V isotherm usually observed for systems where the adsorbate/adsorbent interaction is rather weak. Indeed, the interaction between the water molecules and the MIL-53(Cr) framework at low pressure strongly differs in both forms. This different behavior is also confirmed from an energetic point of view. As observed in Figure 3b, the adsorption enthalpies calculated at low coverage significantly deviate with values centered around −50 and −39 kJ·mol$^{-1}$ for the NP and the LP forms, respectively, that need to be compared to the vaporisation enthalpy for water (∼−44 kJ·mol$^{-1}$) at room temperature. Both isotherm and enthalpy profiles simulated for the LP form in the low domain of pressure thus suggest a soft hydrophobic-like behavior of this structure while the water adsorption is favored in the NP version. It results that such a water-assisted structural transition drastically modifies the hydrophobic/hydrophilic character of the MIL-53(Cr) material. The comparison of these simulated data with both experimental adsorption isotherm and enthalpy (Figure 3a,b), recently reported by some of us,77 is then employed to validate such findings. One first observes that the experimental adsorption
isotherm shows two steps, confirming small uptake at very low pressure with the presence of a plateau that corresponds to the adsorption occurring initially in the LP form. Such “hydrophobic” character of the MIL-53(LP) form is also confirmed by the very low experimental adsorption enthalpy measured at the initial stage of adsorption (−35 kJ·mol⁻¹) in agreement with the simulated value (−39 kJ·mol⁻¹), which both remain significantly below the vaporisation enthalpy. For the pressure range comprised between 7 and 30 mbar, the experimental isotherm is well described by the simulated one for the NP structure (Figure 3a), which supports that this form is predominantly present in this range of pressure as claimed above. One notices that the adsorbed amount does not reach a plateau but rather continuously increases, consistent with the predicted progressive swelling of the NP form as reported by Figure 2. Further, the experimental adsorption enthalpy reaches in this range of pressures a plateau around −58 kJ·mol⁻¹ which is in agreement with the value calculated for the water adsorption in the NP form (−55 kJ·mol⁻¹) (Figure 3b). Above 30 mbar, the isotherm shows a sudden uptake which corresponds to the second structural switching (from the NP to the LP form) as discussed above.

In order to quantitatively analyze the experimental adsorption isotherm and more particularly in the two transition regions where both LP and NP forms can coexist, a “composite” approach is required. It is based on the determination of a global adsorption isotherm from those calculated individually in both rigid NP and LP forms using eq 3

\[N_{\text{NP}}^{\text{sim}}(p) = X_{\text{NP}}^{\text{sim}}(p)N_{\text{NP}}^{\text{sim}}(p) + X_{\text{LP}}^{\text{sim}}(p)N_{\text{LP}}^{\text{sim}}(p) \]

where \(X_{\text{NP}}^{\text{sim}}(p) \) and \(X_{\text{LP}}^{\text{sim}}(p) \) are the fractions of the LP and NP forms respectively for a given pressure \(p \), that have been previously extracted from infrared measurements, \(N_{\text{NP}}^{\text{sim}}(p) \) and \(N_{\text{LP}}^{\text{sim}}(p) \) the adsorbed amounts of H₂O simulated in the NP and LP rigid forms respectively and \(N(p) \) the total uptake for a given pressure \(p \). The resulting simulated “composite” adsorption isotherm is in good agreement with the experimental one obtained by gravimetry (note that, for the high pressure range, the comparison is made with the experimental desorption branch as seen in Figure 3c). Our simulations predict a pressure for the first structural LP to NP transition slightly shifted compared to the experimental one. This deviation can be explained by the fact that our calculations are based on the NP/LP fractions estimated by infrared spectroscopy whose equilibrium conditions can slightly differ from those considered during the gravimetry measurements.

Such behaviors could be rationalized by simply looking at the exposure of the hydrophilic (inorganic part) and hydrophobic (aromatic ring) parts of the framework (see Figure 1). Whereas both parts are accessible toward guests in the LP form, the NP form presents rather segregated hydrophobic and hydrophilic portions, associated with an almost close packing of the phenyl rings which becomes less accessible toward guests. To get some insights into the microscopic adsorption mechanism, the probability density of water in the pore of the NP form was calculated from the analysis of the configurations stored during the GCMC simulations. At low loading, the water molecules are homogeneously distributed within all the pores of the MIL-53(Cr) as shown in Figure 4a. Further, in addition to the hydrogen bonds they establish between each other, the water molecules interact strongly with the two opposite pore walls of the material via hydrogen bonds between (i) their oxygen atoms Ow and the protons of the μ₂-OH groups and (ii) their protons Hw and the oxygen atoms of the carboxylate groups as illustrated in Figure 4, c. It is clearly stated from the radial distribution functions calculated at low loading for the Ow−Ow pair (Figure 5a) that the hydrogen bonds are slightly stronger than in the bulk state with characteristic mean Ow−Ow distances of 2.6 and 2.8 Å, respectively. One can further notice from Figure 5b that the average Ow−H(μ₂-OH) distances (1.6 Å) are shorter than the ones between the water molecules (Ow−Hw of 1.9 Å). This means that the interactions between the water molecules and the MIL-53(Cr) surface are stronger than those in play between the water molecules themselves, which is in agreement with a higher acidity of the μ₂-OH group. Moreover, the water molecules are highly oriented along the direction of the tunnel whatever the loading, as illustrated in Figure 4b,c for different loadings. These resulting geometries are consistent with those previously reported by DFT calculations and ex-situ X-ray diffraction.

The situation drastically differs in the case of the LP form of the MIL-53(Cr). One first observes that the water molecules are not homogeneously distributed within all the pores of the material at the low pressure. As a typical illustration, Figure 6a

Figure 4. The 2D density plots for water in the NP form of MIL-53(Cr) at 300 K obtained from GCMC simulations through the xy plane for 1 H₂O/uc. Red regions correspond to the higher probability of containing H₂O molecules (a). Typical arrangements of the water molecules in the NP form obtained at low (1 mbar) (b) and high loadings (10 mbar) (c). The distances (in Å) reported in green and blue correspond to the interactions between the water molecules and the MOF framework while those in white are between water molecules.
The Journal of Physical Chemistry C

The Journal of Physical Chemistry C

Figure 5. Radial distribution functions for Ow–Ow interactions (Ow for oxygen water) in MIL-53(Cr)-LP and -NP, MIL-47(V) and bulk water (a), Ow–H(μ2-OH) (dash lines) and Ow–Hw (straight lines) in MIL-53(Cr) LP and NP (b), and Ow–O(μ2-OH or -O) in MIL53(Cr)-LP and NP and in MIL-47(V) (c) at low loading. The blue, red, and green lines correspond respectively to the MIL-53(Cr)-LP, -NP and MIL-47(V). The bulk water is represented by black lines.

clearly shows that only one pore is partially filled while the others are almost empty that is consistent with a soft hydrophobic character of this structure as mentioned above. When the pressure increases, the filling of the pores occurs in such a way that the water molecules form small clusters instead of interacting each with the pore wall (Figure 6b,c). This is mainly due to stronger water/water interactions compared to the H2O/MIL process similarly to the case of silicalite or NaA55,82,83 and more recently in the MOFs.58,79 At higher pressure, the hydration mechanism imposes a water cluster-growth adsorption process similarly to the case of silicalite or NaA55,82,83 and MIL-47(V) imposes to rescale the partial charges. Indeed, as seen in previous partial charges validated for CH4 and CO2 adsorption in silicalite or NaA,84 the distribution of water molecules is strongly polarizing media than in bulk water consists of a predominantly hydrophilic character.78 One can thus suspect that the presence of the μ2-OH group plays a similar role allowing the water molecules to initiate the formation of clusters and condensate. Such statement would result on a fully hydrophobic character of the MIL-47(V) structure that is confirmed by our simulations (Figure 7). Indeed, the distribution of water molecules is strongly heterogeneous, as shown in Figure 7a, with either completely empty or filled pores, consistent with the behavior previously pointed out in several zeolites including silicalite-1 and DAY qualified as hydrophobic solids.87 This trend remains true up to high pressures. As confirmed by the RDF plots in Figure Sc, the interactions between the H2O molecules and the pore wall of MIL-47(V) is comparable to those observed for the MIL-53-(Cr)-LP. The water molecules are then arranged in such a way to form clusters within the center of the porosity. They are constituted by up to 12 H2O at high loading as illustrated in Figure 7c. This situation becomes more similar to the number of water molecules implicated in the clusters (14 for tetrahedral clusters) for the bulk water, while the number of hydrogen bonds between water molecules at saturation (2.9) remains lower than in the bulk phase.

The simulation of the adsorption isotherms in the case of MIL-47(V) imposes to rescale the partial charges. Indeed, as seen in Figure 8a, the comparison between experimental data and simulated results shows a large discrepancy if we consider the previous partial charges validated for CH4 and CO2 adsorption and diffusion.64,65,67 As suggested previously by other authors,57,85,89 one way to take into account that the water adsorbed in porous solids is in a less polarizing media than in bulk water consists of adjusting the partial charges of the atoms of the pore wall, which allows one to simulate correctly the condensation of water in hydrophobic solids before the saturation pressure. Here, four different charges distributions were tested: 100 (if we consider...
the partial charges calculated by Rosenbach et al., 67) 70 (if we consider only 70% of all the partial charges from Rosenbach et al., 67) 50, and 30%. It comes that the calculations performed with 30% of the initial charges reproduce better the experimental condensation zone (15 \(\mu \)bar vs \(\sim \) 30 \(\mu \)bar) (Figure 8a). An additional charge distribution, already proposed to simulate the adsorption of alkanes in MIL-47(V), 90 has also been tested but it does not improve the description of the experimental data (see Supporting Information Figure S1), predicting a condensation at higher pressure.

We should note that in the case of the hydrophilic NP form of MIL-53(Cr) material, there is no need to rescale the charges to modulate the water−pore wall interaction as attested by the very good agreement between experimental and simulated low coverage enthalpies. For consistency, the LP form is also simulated using the same partial charges. The comparison of the isotherm obtained for MIL-47(V) and the MIL-53(Cr)-LP is given in the Figure 8b. One clearly shows that the hydrophobic character is less marked in the MIL-53(Cr)-LP form than in MIL-47(V), where the hydration process starts only at 30 \(\mu \)bar in MIL-47(V) (vs 15 \(\mu \)bar in the LP structure), that is, closer to the saturation pressure of water.

Molecular dynamics simulations were further employed at 300 K to explore the concentration dependence of the self-diffusivity (\(D_s \)) for water in the two MIL-53(Cr) forms. The corresponding evolutions of \(D_s \) as a function of the loading are provided in Figure 9. Note that the reported \(D_s \) correspond to orientationally averaged values, while the MSD plots show that the displacements mainly occur along the direction of the tunnel. One observes that \(D_s \) decreases gradually when the loading increases for both forms. Such decreasing \(D_s \) profiles are explained by the decrease of the free space available for the diffusion combined to an increase of the water/water interactions when the adsorbate concentration increases. Further, the diffusivity remains faster in the LP form within the whole range of water loading with \(D_s \) values ranging from \(8 \times 10^{-10} \) to \(1.5 \times 10^{-11} \) \(m^2 \cdot s^{-1} \) and from \(10^{-9} \) to \(2.5 \times 10^{-11} \) \(m^2 \cdot s^{-1} \) in the NP and LP versions, respectively. This result is not surprising as the...
The convolution of a rotational distribution obtained at 300 K for H2O in MIL-53(Cr). The solid line results from fitting simultaneously all spectra (Figure 10) can be analyzed only in terms of hydrogen motions, because of the large incoherent cross-section of this atom. In principle, such spectra contain information on both rotational and translational motions of water. However, by fitting the measured intensities by scattering functions corresponding to these two motions, it becomes clear that the translation was too slow to produce any quasi-elastic broadening. This implies that the self-diffusion coefficient of water is lower than $5 \times 10^{-10} \text{ m}^2\text{s}^{-1}$, whatever the loading that is consistent with the range of values predicted by our simulations. Experiments with a higher energy resolution, such as those proposed by Paoli et al.94 would be necessary to characterize the translational diffusion of water in MIL-53(Cr). However, it was possible to derive a rotational diffusion coefficient, D_R, by fitting simultaneously all spectra. The so-obtained values range between 4 and $6 \times 10^{10} \text{s}^{-1}$, D_R being larger at smaller concentration. From simulations, the averaged correlation time for water molecules in the LP form is about 50 ps at low loading (1 H2O/uc) while it reaches 2 ns at high loading (7 H2O/uc) (Supporting Information Figures S2 and S3), which is within the same order of magnitude than those determined by PFG NMR in the case of alkanes in Cu-BTC.74 Further, the D_R value calculated for 1 H2O/uc in the LP form is $1.4 \times 10^{10} \text{s}^{-1}$ within the same range of magnitude than those obtained by QENS but much lower than in the bulk water (1.5 ps and $60 \times 10^{10} \text{s}^{-1}$).95 In the case of the NP form, it is rather difficult to estimate such time as the high confinement strongly limits the degree of freedom of the water molecules.

The activation energies for the diffusion in both MIL-53(Cr) structures have been calculated for a loading of 2 H2O/uc by determining the diffusion coefficients at three temperatures (300, 400, and 500 K) (Figure 11). As already emphasized for other gases in this solid,67,75,95–97 the diffusion process is a temperature activated process and follows an Arrhenius law. Figure 11 reports activation energies of 39.5 and 29.8 kJ mol$^{-1}$ for the NP and LP forms, respectively, that are within the same range of values than those previously observed in zeolites such as NaX (48 kJ mol$^{-1}$) and NaY (35 kJ mol$^{-1}$).95 This trend is consistent with a faster diffusivity simulated in the LP form.

A further step consisted of analyzing the MD trajectories in order to provide a full picture of the diffusion mechanism in this material. Regarding the LP form, the diffusion process is found to be of 1D type as previously observed for other gases67,75,95–97 in the same form of this solid. An illustration is provided in Figure 12a.
where the trajectory of H$_2$O at low concentration in this LP form can be roughly drawn by following the higher density region provided by the 2D density plots. It is clearly observed that the motions of the water are predominantly orientated along the direction of the tunnel, this behavior remaining true whatever the H$_2$O loading. Further, one can imagine (Figure 12a,b) a jump sequence between two consecutive μ_2-OH groups that act as steric barriers, the displacements along the two other axes being negligible with the absence of any density probability.

In contrast, the diffusion mechanism for water in the NP form is strongly confined in the middle of the pores; the displacements of the water molecules occur through a more restricted diffusion corridor involving simultaneous interactions with the two opposing sides of the same pore. This behavior is illustrated from the 2D density plots calculated in the NP form at low loading (1H$_2$O/uc) (see Figure 13a); the same situation is also observed at intermediate and higher loadings. Further, the 2D density plots represented through the xz plane (Figure 13b) suggests that the diffusion is more continuous along the direction of the tunnel rather than a jump sequence observed in the LP form. One can determine a diffusion corridor section of 5 Å, that is very similar to the ones we previously reported for other adsorbates molecules in such a material.98 Because of the high confinement in
this NP structure, the water molecules tend to move via a single-file diffusion process, that is, the water molecules are not able to cross each other along the direction of the tunnel. This peculiar dynamical behavior is illustrated by three snapshots extracted from the MD trajectory for 2 H₂O/uc at different time intervals (Figures 14) which clearly show that the sequence of the water molecules along the tunnel remains the same along the simulation. Such an unusual diffusion type is consistent with what has already been evidenced in the case of CO₂ in the same NP form. Further analysis allowed us to estimate a mean residence time of the H₂O molecules around the μ₃-OH groups for a loading of 2 H₂O/uc to be 50 ps in this NP form. As a comparison, this value is significantly higher than the one we previously determined for H₂ in the LP form (5 ps).

One should notice that the self-diffusivity for water is almost similar in both forms at very low loading (0.5 H₂O/uc). Such a behavior can be explained by the fact that the global diffusion mechanism of the water molecules is governed by two factors: the residence time spent by the water molecules close to the μ₃-OH groups and the jump time required to pass from one μ₃-OH group to another. Indeed, while the NP form leads to a shorter mean residence time than in the LP version, the jump time is longer. It results from these two opposite trends that the self-diffusivity is similar in both forms. The situation drastically differs for higher loadings; while the mean residence time remains similar in both forms, the jump times much strongly increase in the NP form due to the single file diffusion mechanism, thus leading to a deeper decrease of the self-diffusivity as observed in Figure 9.

CONCLUSION

After a careful validation of the force field for describing the interactions between the water and the flexible MIL-53(Cr) framework from a structural standpoint, the adsorption and diffusion mechanisms in both the large pore and the narrow pore forms of these structures were explored using appropriate molecular simulations combined with experimental data. It results that the breathing effect is accompanied by a modification of the hydrophobicity/hydrophilicity character of the MIL-53(Cr) surface. While the LP form is mildly hydrophobic with the water molecules forming clusters in a similar way than in the bulk phase, the NP version is hydrophilic with strong interactions between the water molecules and the pore walls. A different dynamical behavior is also evidenced from our molecular dynamics simulations that show two different diffusion processes in the LP and the NP forms. While, the LP form imposes a 1D type diffusion mechanism for the water with jump sequence around the μ₃-OH groups that act as steric barriers, the NP structure due to its high degree of confinement leads to slower diffusion process for water with a single-file 1D type mechanism. The structural switching opens a way to easily tune the hydrophobicity of MOFs to selectively adsorb organic pollutants or alcohols and could indeed partially explain its selective adsorption of alcohol in presence of water. Such a breathing effect can thus play a similar role than the functionalization of the structure with either hydrophobic or hydrophilic groups dependent on the vapor/gas one aims at capturing. This strategy could lead to propose a low-cost adsorbent with high selectivity for the alcohols/water mixture.

ASSOCIATED CONTENT

© 2011 American Chemical Society

REFERENCES

The Journal of Physical Chemistry C

The Journal of Physical Chemistry C

